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1. (P.252 Q7) Since (fn) converges uniformly to f on A, choose ε = 1, there exists N ∈ N such that for all
n ≥ N , ‖fn− f‖A < 1. In particular, consider n = N , then by assumption there exists MN ∈ R such that for
all x ∈ A, |fN (x)| ≤ MN . Therefore, for all x ∈ A, |f(x)| ≤ |f(x)− fN (x)|+ |fN (x)| < 1 +MN . Therefore,
f is bounded on A.

2. (P.252 Q8) For each n ∈ N, we claim that fn(x) is bounded on [0,+∞): on [0, 1],
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Therefore, for all x ∈ [0,+∞), |fn(x)| ≤ n, and hence fn is bounded for each n ∈ N.
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Therefore, the pointwise limit of (fn) is given by f(x) =
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. Since lim
x→0+

f(x) = +∞, f is not

bounded on [0,∞).

If (fn) converges uniformly to f on [0,+∞) , then by the result of Q7, f is also bounded on [0,+∞),
which is a contradiction. Therefore, (fn) does not converge uniformly to f on [0,+∞).

3. (P.252 Q12) We first show that fn(x) = e−nx
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converges uniformly to 0 on [1, 2]: since enx
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Therefore, by Theorem 8.2.4, lim
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